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Abstract

Objective: The current population-based study examines the association between county-level 

ambient air pollution and childhood asthma.

Methods: Data from the nationally representative 2010–2015 National Health Interview Survey 

were linked to nationwide fine particulate matter (PM2.5) air pollution data at the county-level 

from the National Environmental Public Health Tracking Network which utilizes air quality 

monitoring stations and modeled PM2.5 measurements (Downscaler model data) and adjusted 

by county-level socioeconomic characteristics data from the 2010–2015 American Community 

Survey. Multilevel modeling techniques were used to assess the association between PM2.5 annual 

concentrations (quartiles < 8.11, 8.11–9.50, 9.51–10.59, ≥ 10.60 μg/m3) and current childhood 

asthma along with two asthma outcomes (episode in the past year, emergency room (ER) visit due 

to asthma).

Results: From 2010–2015, there were significant declines in PM2.5 concentrations and asthma 

outcomes. In unadjusted models, children living in areas with higher PM2.5 concentrations were 

more likely to have current asthma, ≥1 asthma episode in the past year, and ≥1 ER visit due 

to asthma compared with children living in areas with the lowest quartile (< 8.11 μg/m3). After 

adjusting for characteristics at the county, geographic, and child and family-level, significant 

associations remained for asthma episode, and ER visit among children living in areas with PM2.5 

annual concentrations between 9.51–10.59 μg/m3 (3rd quartile) compared with children living in 

areas with the lowest quartile.

Conclusions: This study adds to the limited literature by incorporating nationally representative 

county-, child-, and family-level data to provide a multi-level analysis of the associations between 

air pollution and childhood asthma in the U.S.
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Introduction

Asthma is one of the most common chronic diseases among children (1), and remains a 

leading cause for childhood hospitalization (2). The costs associated with childhood asthma 

impose a vast economic burden on the United States health care system (3, 4), with more 

than 2.4 million physician office visits (5), 545,000 emergency department (ED) visits (6), 

and 75,000 hospitalizations annually (7) in 2016. Children with asthma also experience 13.8 

million missed school days annually (8), as of 2013.

The prevalence of childhood asthma has doubled nonlinearly over the past 40 years (9, 

10), despite improvements seen in air pollution over the same time period, as evidenced 

by a downward shift of criteria pollutants (particulate matter, carbon monoxide, lead, 

nitrogen dioxide, ozone, sulfur dioxide) (11). Previous studies have demonstrated a clear 

and consistent association between air pollution and various respiratory diseases due to 

both short and long term exposures, with asthma being one of the most notable (12–

25). However, a standardized approach for exploring the relationship between ambient 

air pollution and childhood asthma is lacking with inconsistent geographic specificity 

(e.g. state or local-level pollution data, but rarely national air pollution data) (17–26). 

Furthermore, although the number of United States Environmental Protection Agency 

(EPA) monitoring stations are increasing (27), the majority are placed in metropolitan 

areas, with sporadic locations throughout nonmetropolitan areas, leading to counties without 

air pollution exposure measurements. Conclusions about air pollution’s association with 

childhood asthma are frequently made while excluding results from rural territories, limiting 

the ability to generalize nationally (19–22, 24–26).

Recently, the Centers for Disease Control and Prevention (CDC), working with the United 

States EPA, developed modeled air pollution data (known as Downscaler modeled data) 

to accompany air monitoring station data (28) at the county-level to create a nationally 

representative air pollution dataset. Downscaler modeled data, which comes from the 

National Environmental Public Health Tracking Network, can be utilized to gain a greater 

understanding of health effects based on a person’s county of residence. However, research 

examining the associations of various health outcomes from a nationally representative 

health data source to modeled pollution data are lacking. Moreover, few studies have 

analyzed PM2.5 annual concentrations and childhood asthma data using multilevel models 

(24), which account for the similarity of children living in the same geographical 

area. Finally, limited studies have modeled socioeconomic county-level characteristics, 

which have been associated with the availability of medical treatment within and across 

geographical areas (24, 25). Adjusting for these county-level socioeconomic characteristics 

has been shown to reduce the magnitude of the association between access to care 
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and neighborhood disadvantage by areas (29), and reduce the variance in the estimated 

prevalence of annual childhood asthma ED visits (30).

The current population-based study combines six years of nationally representative 

health data from the National Health Interview Survey (NHIS) along with the most 

recently available air pollution data (31) to explore the association between PM2.5 annual 

concentrations and childhood asthma. This dataset is also linked to county-level American 

Community Survey (ACS) data to allow for adjustment of county-level socioeconomic 

characteristics. We hypothesize an association between childhood asthma and air pollution 

concentrations, but that these associations will be attenuated after adjusting for county- and 

family-level characteristics.

Methods

Data Sources

The current study used data from the 2010–2015 NHIS linked to two external data sources 

at the county-level, the 2010–2015 National Environmental Public Health Tracking Network 

(Downscaler modeled data) and the 2010–2015 ACS. These data are linked by United States 

county. See Figure 1 for more information on how these datasets were linked.

National Health Interview Survey: The NHIS is a nationally representative survey 

of the civilian noninstitutionalized US population conducted by the National Center for 

Health Statistics (NCHS). Households are sampled and selected to be interviewed in-person 

by trained United States Census Bureau interviewers, with some follow-ups completed 

via telephone. The NHIS consists of three components: (a) the family core, with selected 

demographics and broad health measure questions for each member of the family; (b) the 

Sample Adult interview, with detailed health measures on a randomly selected adult; and 

(c) the Sample Child interview, with detailed health measures on a randomly selected child 

(typically completed by the child’s parent). Data for the current analysis come from both 

the Sample Child interview and the family core. Response rates for the 2010–2015 NHIS 

Sample Child interview ranged from 63–75% (32). More information about the NHIS, 

including access to public use datasets can be found at https://www.cdc.gov/nchs/nhis.htm. 

This study utilizes restricted NHIS data which can be accessed through the CDC Research 

Data Center: https://www.cdc.gov/rdc/index.htm.

Measures

Asthma variables: Parents were first asked “Has a doctor or other health professional ever 

told you that [child’s name] had asthma?”.

A positive response resulted in three additional asthma questions about the severity of the 

child’s asthma, including its persistence, frequency, and intensity. These questions were not 

asked if the parent did not affirm a lifetime asthma diagnosis.

Current asthma cases were defined based on an affirmative answer to the follow-up question 

“Does [child’s name] still have asthma?”. An asthma episode was captured by an affirmative 

answer to the question “During the past 12 months, has [child’s name] had an episode or 
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an asthma attack?”. An asthma-related hospital visit was captured by an affirmative answer 

to the question “During the past 12 months, did [child’s name] have to visit an emergency 

room or urgent care center because of his/her asthma?” (herein referred to as an “ER 

visit due to asthma”). For this analysis, these outcomes were examined among all children 

regardless of lifetime asthma diagnosis. These three variables serve as proxies and could 

indicate how well a child’s asthma may be controlled. Asthma episodes and asthma-related 

hospital visits have been used as proxies for the frequency and intensity of a child’s asthma 

symptoms (33).

Child and family-level characteristics: Sociodemographic and health characteristics 

examined have been associated with asthma outcomes (9) and include the child’s sex, 

age group (0–5 years, 6–11 years, 12–17 years), race and ethnicity (non-Hispanic White, 

non-Hispanic Black, non-Hispanic other, Hispanic), insurance status (only private health 

insurance, any public health insurance, uninsured), family income recorded as a percentage 

of the federal poverty level (<100%, 100–199%, 200–399%, ≥400%), educational attainment 

of the highest educated family member (high school education or less, some college or 

Associate’s degree, Bachelor’s degree or more), and housing type (owned, rental, other 

arrangement). Multiple imputation with the NHIS imputed family income file was used for 

approximately 8% of the sample (34).

Geographical household characteristics: Geographic region of residence is classified by 

the United States Census Bureau regions and divisions based on federal information 

processing standards (FIPS) state codes. Geographic division was categorized into New 

England, Middle Atlantic, East North Central, West North Central, South Atlantic, East 

South Central, West South Central, Mountain, Pacific (35). Urbanicity of residence was 

categorized into 6 groups including large central metropolitan, large central metropolitan, 

medium metropolitan, small metropolitan, micropolitan, and noncore based on the 2013 

NCHS Urban-Rural Classification Scheme for Counties (36). Region has been associated 

with asthma outcomes (8, 9), with mixed findings for urbanicity (9, 37). Both region and 

urbanicity are included in modeling to account for possible variation at the county-level.

Environmental Public Health Tracking Network: The Tracking Network, 

implemented by the CDC’s National Center for Environmental Health combines health 

and environmental data from national, state, and city sources. In the past, air quality 

data came primarily from monitoring stations around the country from the EPA. There 

are approximately 4,000 air pollution monitoring stations located in 20% of US counties, 

mainly located in urban counties (38). However, recognizing a limitation in the coverage 

of monitoring stations, as well as the number of available readings at a typical monitoring 

station, the CDC and the EPA worked together to develop a statistical model, known 

as Downscaler modeled data, to be able to make Census tract-level estimates of several 

pollutants, including ozone and fine particulate matter (PM2.5) in the contiguous United 

States (39). These tract-level air pollutant predictions were averaged (40, 41), using tract 

populations as spatial weights, to generate county-level estimates of PM2.5, including an 

annual average and the number of days above the daily 24-hour National Ambient Air 

Connor and Zablotsky Page 4

J Asthma. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Quality Standard for PM2.5. More information about the Tracking Network can be found at 

https://ephtracking.cdc.gov.

Measures

Air pollution: Annual county-level PM2.5 values from the contiguous United States 

are attained via a combination of air quality monitoring stations and modeled PM2.5 

values, while PM2.5 measurements from Hawaii and Alaska only come from air quality 

monitoring stations (as they were not part of the Tracking Network between 2010–2015). 

All Hawaii and Alaska counties were assigned the same state-averaged value (calculated 

from all available monitors within the state) for a given year. PM2.5 are atmospheric 

particulates with a diameter of less than or equal to 2.5 micrometers (μm). The ambient 

air pollution measurement dataset was scaled into quartiles to provide sufficient power to 

view meaningful effects between differing annual average levels of PM2.5 in μg/m3 (< 8.11, 

8.11–9.50, 9.51–10.59, ≥ 10.60).

American Community Survey: The ACS is a continuous national survey administered 

by the US Census Bureau, that collects basic demographic, employment, education, 

housing, and health and disability data from approximately 3.5 million addresses each 

year. Data are nationally representative, coming from all 50 states as well as the District 

of Columbia, thereby allowing annual county-level estimates. Response rates for the 2010–

2015 ACS ranged from 90–98%. More information about the ACS can be found at https://

www.census.gov/programs-surveys/acs/about.html.

Measures

County-level characteristics: County-level characteristics mirrored the sociodemographic 

characteristics at the family-level, and include the percentage of individuals who are White, 

Hispanic, uninsured, living under the federal poverty line, living in owner-occupied housing, 

and have a high school or higher education. Although similar characteristics are included 

from the NHIS at the individual or family level, these county-level characteristics are 

included to be able to adjust for possible variability within and across geographical areas.

Sample

The 2010–2015 study period includes 75,933 children aged 0–17 years distributed among 

850 counties. The analytic sample, which required lifetime asthma status, contains 75,861 

children (<0.1% dropped due to missingness). Demographic differences were explored 

between children with and without current asthma and with and without each asthma 

outcome (asthma episode, ER visit due to asthma) (Table 1).

Statistical analysis

Demographic and clinical characteristic differences between children with and without 

asthma outcomes were tested utilizing a Rao-Scott corrected χ2 test, and when significant, 

was followed by bivariate logistic regressions to assess significance of each asthma outcome 

by specific characteristics (see Table 1). The prevalence of current asthma along with annual 

air pollution values are presented for each year of the study period in Figure 2.
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All estimates and all multilevel models were weighted and accounted for the complex survey 

design of the NHIS to allow for proper variance estimation. An adjustment was made to the 

survey weights to account for the six years of data and the number of children in a given 

sampled county (42–45). Therefore, estimates and results from the multilevel models are 

nationally representative of the entire child population and designed to reflect all counties 

in the United States, not just those in-sample. More information about the development of 

NHIS sample weights can be found elsewhere (46).

Multilevel modeling was employed for current asthma and the two asthma outcomes (asthma 

episode, ER visit due to asthma) treating air pollution quartiles as a categorical variable 

with the lowest quartile as the reference group (Table 2). Multilevel modeling adjusts for the 

similarity of children living in the same county and can establish how much of the variation 

in asthma outcomes are the result of child and family-level characteristics and how much 

is related to differences between counties. Each multilevel model contained 2 levels: (1) 

family (2) county of residence. For each model, an intraclass correlation coefficient (ICC) 

was calculated to determine the amount of variance in each asthma outcome that can be 

explained at the county-level. ICCs can range from 0 to 1, with higher numbers representing 

more variance that can be explained at the county-level. Laplace parameter estimation was 

utilized for the generalized linear mixed models.

A set of four incremental models were used for each asthma outcome of interest (dependent 

variable):

1. An unconditional model (Model 0) with no covariates and a random effect for 

the asthma outcome. This is the baseline model to determine the amount of 

variance that can be explained at the county-level.

2. A bivariate logistic regression (odds ratios [ORs]) between air pollution quartile 

(fixed effect) and each asthma outcome (random effect) (Model 1).

3. A multivariate logistic regression (adjusted odds ratios [AORs]) between air 

pollution quartile and each asthma outcome with the adjustment of select 

county-level characteristics (percentage of individuals who are White, Hispanic, 

uninsured, living under the federal poverty line, living in owned housing, 

and have a high school or higher education) and the geographical household 

characteristics of region and urbanicity (fixed effects) (Model 2).

4. A multivariate logistic regression (adjusted odds ratios [AORs]) between air 

pollution quartile and each asthma outcome with the additional adjustment 

of select child and family-level characteristics (sex, age group, race/ethnicity, 

insurance status, family income recorded as a percentage of the federal poverty 

level, educational attainment of the highest educated household member, and 

housing type) (fixed effects) (Model 3). To account for the possibility of year-to-

year fluctuations in air pollution (11), survey year was also included.

Predicted marginals were calculated for each quartile following the logistic regressions in 

Models 1 and 3 (Figure 3) and differences between quartiles were assessed by examining 

whether the odds ratios between any two quartiles was significant (p<0.05).
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Results

Demographics

Table 1 presents the child, family, and geographic characteristics of children with and 

without current asthma and with and without experienced the asthma outcomes of interest 

(episode in past year, ER visit due to asthma in past year). Consistent patterns emerged 

where children with the variable of interest were more likely to be male, non-Hispanic 

Black, and received private or any public health insurance when compared to their respective 

peers when compared to children without the variable of interest (e.g. children with current 

asthma vs children not currently diagnosed with asthma). Children who had current asthma 

or the asthma outcomes were also more likely to live in a family with rented housing, living 

below the federal poverty line, and with the highest educated family member having some 

college or an Associate’s degree.

Air pollution and asthma outcomes

During 2010–2015, 8.9% of children had current asthma and the PM2.5 annual average 

was 9.37 μg/m3 for children in the sample. During this time period, there was a significant 

decrease (p<.0001) in the PM2.5 annual average from 9.70 μg/m3 in 2010 to 8.99 μg/m3 in 

2015 (see Figure 2). In addition, 5.0% of children had had an asthma episode or attack in 

the past 12 months, and 2.0% of children had an asthma-related emergency room or urgent 

care visit. There was also a significant decrease from 2010–2015 in the prevalence of current 

asthma (p=.0068), asthma episode (p<.0001), and ER visit due to asthma (p=.0135) (see 

Supplemental Table 1 for more details).

Multilevel models

Unconditional models (Model 0) revealed explainable county-level variance ranging from 

5.8% for current asthma to 14.0% for an asthma-related ER visit (Table 2).

In Model 1, children residing in areas with a higher PM2.5 air pollution level (Q3: 9.51–

10.59) had increased odds of having current asthma, an asthma episode, and visited an 

ER due to asthma, compared to children residing in areas with the lowest pollution 

concentrations (Q1: <8.11 μg/m3). In addition, children living in the most polluted areas 

(Q4: ≥10.60 μg/m3) were more likely to have current asthma, and an ER visit due to asthma 

compared to children living in the lowest polluted areas (Q1: <8.11 μg/m3). Finally, children 

were also more likely to have current asthma living in the 2nd least polluted areas (Q2: 

8.11–9.50 μg/m3) relative to the least polluted areas (Q1: <8.11 μg/m3).

In Model 2, with adjustments for socioeconomic county-level characteristics, children living 

in areas with higher PM2.5 air pollution concentrations (Q3: 9.51–10.59 continued to more 

likely to have current asthma, an asthma episode in the past year, and have visited an ER 

due to asthma compared to children living in areas with the lowest air pollution (Q1: <8.11 

μg/m3). However, children living in the most polluted areas (Q4: ≥10.60 μg/m3) were more 

likely to have visited an ER due to asthma as well as an asthma episode compared to 

children living in the lowest polluted areas (Q1: <8.11 μg/m3).
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In Model 3, after adjusting for characteristics at the county, geographic, and child and 

family-level, significant associations remained for children residing in the third most 

polluted quartile (Q3: 9.51–10.59 μg/m3) for asthma episode, and ER visit due to asthma 

compared to children living in areas with the lowest air pollution quartile (Q1: <8.11 μg/m3). 

However, no significant difference remained for current asthma among the highest polluted 

quartile when compared to the lowest polluted quartile (despite a similar adjusted odds ratio 

seen in the 3rd quartile to 1st quartile comparison), potentially due to reduced statistical 

power for this comparison.

Figure 3 presents the marginal probabilities of the current asthma and the two asthma 

outcomes in each PM2.5 quartile for Models 1 (unadjusted) and 3 (adjusted). It should be 

noted that the unadjusted prevalence of current asthma (9.5% vs. 8.8%), asthma episode 

(5.5% vs. 4.8%) and an ER visit due to asthma (2.2% vs. 2.1%) (Model 1) is higher in the 

3rd quartile compared to the 4th quartile, although these differences are not significant. After 

adjusting for socioeconomic county-level and child and family-level characteristics (Model 

3), non-significant differences remained for each asthma outcome when comparing the 3rd 

and 4th quartiles.

Discussion

The current study was designed to estimate associations between PM2.5 annual 

concentrations and childhood asthma outcomes using a nationally representative data 

source in the National Health Interview Survey, linked to datasets with national coverage 

at the county-level including the Tracking Network (Downscaler Model), and the 

American Community Survey. Many of the previous studies that investigated ambient 

air pollution and childhood asthma associations were geographically limited or suffered 

from limited coverage due to EPA monitoring stations. This study attempts to fill this 

gap by supplementing a nationally representative survey with county-level socioeconomic 

characteristics and modeled air concentration data. Using multilevel modeling helps account 

for the similarity of children living in the same county and speaks to how much variability 

can be explained by the child’s geographic location.

In the first series of models, higher pollution was associated with increased odds of current 

asthma, having an asthma episode in the past year, or an ER visit due to asthma in the 

past year. Previous research supports this finding with asthma prevalence and ED visits 

increasing with greater air pollution rates (47). When accounting for socioeconomic county-

level characteristics and geographical household characteristics (Model 2), an association 

between air pollution remained for all asthma outcomes.

Although the magnitude of the odds ratios throughout the study were small, an association 

remained among asthma episode, and ER visit due to asthma, for children living in areas 

with the third highest polluted quartile (9.51–10.59 μg/m3) compared with children living 

in areas with the lowest air pollution quartile (<8.11 μg/m3) after accounting for county, 

geographic, and child and family-level characteristics. The final model was designed to 

explore the potential influence a family’s socioeconomic status may play in understanding 

the impact of air pollution on a child’s health. Yet, the characteristics included in the final 
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model could not fully explain the association between PM2.5 air pollution quartiles and 

asthma episode, or ER visit due to asthma. It is unclear if this is a result of unmeasured 

confounding or a true association between air pollution and the asthma outcomes. In 

addition, although all children in the same county were assigned the same outdoor air 

pollution value and same socioeconomic county characteristics, there was likely variability 

between households. The lack of a significant association between air pollution and current 

asthma in the final model may be shaped by a parent’s perception of the child’s asthma 

status, which could be considered to be a more subjective measure (“Does [child’s name] 

still have asthma?”) than current asthma, asthma episode, and an ER visit due to asthma.

Limitations

National Health Interview Survey—The cross-sectional nature of NHIS does not allow 

for causal inference. Moreover, the NHIS does not collect how long the child has lived at 

the current address or how many times they have moved in their lifetime. Therefore, it is 

not possible to know if the child’s asthma preceded their current air pollution exposure or 

not. The current study assumes that children have lived in the same geographic county their 

entire lives, which may prove to be untrue for a portion of the sample, leading to spurious 

associations. The fact that current asthma had the lowest amount of variance explained at 

the county-level, could reflect children moving from a given county. It is important to note 

in some counties that there may be large fluctuations in air pollution year to year, and even 

within a given year, due to natural disasters (e.g. wildfires).

In addition, NHIS does not include indoor air pollution measures, a potential unmeasured 

confounder. Developing counties have discovered that indoor air pollution is predicted to 

be associated with 1.6 million premature deaths worldwide annually with nearly 250,000 

children dying before age 14 (48), along with increased risks for developing asthma (49). 

However, research investigating indoor air pollution is lacking within the United States, with 

limited generalizability (mostly focusing on populations in inner cities) (50, 51).

Our study implemented a population-based framework with scaled weights to account for 

the child population at the county-level. The population-based framework incorporates the 

full NHIS child sample in a given year, and scaling the sampling weights, allowed for 

nationally representative conclusions with the incorporation of other county-level data from 

the ACS and Downscaler.

While there is notable value to a risk-based framework (e.g. focusing only on children with 

a current asthma diagnosis), such an analysis was not feasible with scaled weights, given the 

potential for both underpowered associations and nonrepresentative conclusions.

Finally, reported asthma cases from NHIS are subject to misclassification due to parent 

report where recall or social desirability biases may exist. Responses to NHIS are not 

subject to clinical verification, and as asthma can be difficult to diagnose in younger 

children, especially children under the age of 5 (26, 52, 53). However, many previous 

studies analyzing childhood asthma include a full age range of children (8–10, 54–56). In 

addition, the incorporation of two county-level data sources for the full childhood population 

(Downscaler modeled data and ACS) and the modification of NHIS final weights to account 
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for the number of children in a given county, requires using children of all ages in the 

analytic sample.

Air pollution—The modeled air pollution dataset had county-level coverage across the 

contiguous United States, and despite error existing in the model, validation studies of 

the Downscaler modeled data found high comparability between monitoring stations and 

modeled data, but with potential underestimation in highly polluted areas (>35 ug/m3) (40, 

41). In addition, since the Tracking Network only models air pollution among the contiguous 

United States and District of Columbia, values had to be derived from PM2.5 air pollution 

monitor readings via the EPA for both Hawaii and Alaska (38).

In addition, the data used in this analysis are between 5 and 10 years old, which does 

not reflect changes in air pollution and asthma prevalence seen in recent years (9, 10, 

38). However, the current paper analyzes the most recent available nationally modeled air 

pollution data linked with nationally representative health data. While it can be hypothesized 

that similar associations between PM2.5 annual concentrations and childhood asthma 

continue to exist, additional research is needed as newer air pollution data become available.

Conclusions

This population-based study provides a multi-level analysis of PM2.5 annual concentrations 

and childhood asthma by using a nationally representative health data source linked to 

modeled air pollution data and nationally representative socioeconomic county-level data. 

Future studies may benefit from following children longitudinally (56) while also exploring 

the potential impact of the child’s home environment (including exposure to indoor air 

pollution) as well as multipollutant effects.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Forming of analytical dataset and merging of datasets

*County-level air pollution was not available for Hawaii and Alaska and was averaged 

across available US EPA monitoring stations during this time frame.
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Figure 2. 
Prevalence of current asthma among children and annual PM2.5 concentration*: United 

States, 2010–2015

*Significant linear trend for annual PM2.5 concentration as calculated by linear regression 

(p<.01).
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Figure 3. 
Adjusted vs. unadjusted prevalence of each asthma outcome, by air pollution quartile: 

United States, 2010–2015

NOTES: Unadjusted percentages are calculated using National Health Interview Survey 

asthma outcomes, by PM2.5 air pollution concentration quartiles (Model 1). Adjusted 

percentages include American Community Survey (ACS) county-level characteristics, 

geographical household characteristics, and National Health Interview Survey (NHIS) 

child and family-level characteristics (Model 3) from the multilevel multivariate logistic 

regression models. Differences between quartiles were determined by examining whether 

the adjusted odds ratios between two quartiles were significant (p<.05).
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Table 1 –

Child, family, and geographic characteristics, by asthma status: United States, 2010–2015

Current asthma 
(n=7,025)
% (SE)

No current 
asthma (n = 

68,779)
% (SE)

Asthma episode 
(n=3,815)
% (SE)

No asthma 
episode (n = 

72,036)
% (SE)

Asthma ER visit 
(n=1,548)
% (SE)

No asthma 
ER visit (n = 

74,302)
% (SE)

Youth characteristics

Sex

 Male
57.5

x
 (0.7)

50.5 (0.2)
58.8

y
 (1.0)

50.7 (0.2)
60.1

z
 (1.7)

50.9 (0.2)

 Female
42.5

x
 (0.7)

49.5 (0.2)
41.2

y
 (1.0)

49.3 (0.2)
39.9

z
 (1.7)

49.1 (0.2)

Age group

 0–5 years
22.5

x
 (0.7)

34.6 (0.2)
27.1

y
 (1.0)

33.8 (0.2)
41.6

z
 (1.7)

33.3 (0.2)

 6–11 years
38.5

x
 (0.8)

32.7 (0.2)
40.6

y
 (1.1)

32.8 (0.2)
36.3

z
 (1.6)

33.1 (0.2)

 12–17 years
39.9

x
 (0.7)

32.8 (0.2) 32.3 (1.0) 33.4 (0.2)
22.1

z
 (1.3)

33.5 (0.2)

Race

 Non-Hispanic White
43.7

x
 (1.0)

51.6 (0.5)
45.0

y
 (1.2)

51.2 (0.5)
30.9

z
 (1.7)

51.3 (0.5)

 Non-Hispanic Black
22.6

x
 (0.8)

12.7 (0.3)
21.7

y
 (0.9)

13.2 (0.3)
30.2

z
 (1.6)

13.3 (0.3)

 Non-Hispanic other 9.3 (0.7) 9.7 (0.3) 9.7 (0.8) 9.6 (0.3) 10.6 (1.4) 9.6 (0.3)

 Hispanic
24.3

x
 (0.7)

25.9 (0.5)
23.5

y
 (0.9)

25.9 (0.5) 28.2 (1.5) 25.8 (0.5)

Health insurance 
coverage status

 Private only
44.0

x
 (0.8)

52.2 (0.4)
42.5

y
 (1.1)

51.8 (0.4)
31.0

z
 (1.6)

51.8 (0.4)

 Any public
52.3

x
 (0.8)

41.4 (0.4)
52.6

y
 (1.1)

41.8 (0.4)
65.1

z
 (1.6)

41.9 (0.4)

 Uninsured
4.8

x
 (0.3)

6.5 (0.1)
4.9

y
 (0.4)

6.4 (0.1)
4.0

z
 (0.6)

6.4 (0.1)

Family characteristics

Housing type

 Owned
51.6

x
 (0.9)

60.4 (0.4)
51.5

y
 (1.1)

60.0 (0.4)
39.8

z
 (1.7)

60.0 (0.4)

 Rental
46.2

x
 (0.9)

37.8 (0.4)
46.1

y
 (1.1)

38.2 (0.4)
57.1

z
 (1.7)

38.2 (0.4)

 Other arrangement 2.1 (0.3) 1.8 (0.1) 2.3 (0.5) 1.8 (0.1) 3.1 (1.3) 1.8 (0.1)

Federal poverty level

 <100%
26.4

x
 (0.7)

21.3 (0.3)
27.1

y
 (1.0)

21.5 (0.3)
34.4

z
 (1.7)

21.5 (0.3)

 100–199% 23.6 (0.7) 23.1 (0.2) 23.6 (1.0) 23.1 (0.2) 23.8 (1.5) 23.1 (0.2)

 200–399%
26.4

x
 (0.7)

28.6 (0.3)
25.2

y
 (0.9)

28.6 (0.3)
23.3

z
 (1.5)

28.5 (0.3)

 ≥400%
23.6

x
 (0.7)

27.0 (0.3)
24.1

y
 (0.9)

26.8 (0.3)
18.5

z
 (1.3)

26.8 (0.3)

Highest education 
family member

 High school or less
32.6

x
 (0.8)

29.5 (0.4) 30.5 (1.0) 29.7 (0.4)
38.0

z
 (1.7)

29.6 (0.4)

J Asthma. Author manuscript; available in PMC 2023 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Connor and Zablotsky Page 18

Current asthma 
(n=7,025)
% (SE)

No current 
asthma (n = 

68,779)
% (SE)

Asthma episode 
(n=3,815)
% (SE)

No asthma 
episode (n = 

72,036)
% (SE)

Asthma ER visit 
(n=1,548)
% (SE)

No asthma 
ER visit (n = 

74,302)
% (SE)

 Some college or 
Associate of Arts (AA) 
degree

37.4
x
 (0.7)

32.4 (0.3)
38.5

y
 (1.0)

32.5 (0.3)
39.2

z
 (1.6)

32.7 (0.3)

 Bachelor’s degree or 
more 30.0

x
 (0.8)

38.2 (0.5)
31.0

y
 (1.0)

37.8 (0.5)
22.8

z
 (1.4)

37.8 (0.5)

Region

 New England
7.0

x
 (0.6)

5.7 (0.5)
7.3

y
 (0.7)

5.8 (0.5) 7.2 (0.9) 5.8 (0.5)

 Middle Atlantic
10.4

x
 (0.5)

9.4 (0.3) 10.2 (0.6) 9.4 (0.2)
11.4

z
 (1.0)

9.4 (0.2)

 East North Central 11.3 (0.5) 11.6 (0.3) 10.9 (0.7) 11.6 (0.3) 10.8 (1.0) 11.6 (0.3)

 West North Central
7.0

x
 (0.6)

8.5 (0.4)
7.0

y
 (0.6)

8.4 (0.3) 7.2 (1.0) 8.4 (0.4)

 South Atlantic
18.7

x
 (0.7)

17.4 (0.4) 18.9 (0.8) 17.4 (0.4)
21.0

z
 (1.4)

17.4 (0.4)

 East South Central 6.3 (0.5) 5.3 (0.2) 6.6 (0.7) 5.4 (0.2) 6.7 (1.1) 5.4 (0.2)

 West South Central 14.0 (0.6) 12.9 (0.3) 13.7 (0.8) 13.0 (0.3) 12.0 (1.0) 13.0 (0.3)

 Mountain 9.1 (0.7) 10.0 (0.4) 9.0 (0.9) 9.9 (0.4)
7.5

z
 (1.2)

9.9 (0.4)

 Pacific
16.3

x
 (0.8)

19.2 (0.5)
16.4

y
 (1.0)

19.0 (0.5) 16.3 (1.6) 19.0 (0.5)

Urbanicity

 Large Central 
Metropolitan

32.8 (0.9) 32.1 (0.5) 32.4 (1.1) 32.1 (0.5)
38.7

z
 (1.8)

32.0 (0.5)

 Large Fringe 
Metropolitan

21.4 (0.9) 21.8 (0.6) 22.2 (1.0) 21.7 (0.6)
18.9

z
 (1.3)

21.8 (0.6)

 Medium 
Metropolitan

20.9 (1.1) 21.3 (1.0) 20.2 (1.2) 21.3 (1.0)
17.7

z
 (1.5)

21.3 (1.0)

 Small Metropolitan 9.3 (1.0) 9.5 (0.9) 9.6 (1.1) 9.5 (0.9) 8.4 (1.4) 9.5 (0.9)

 Micropolitan 8.8 (1.1) 9.0 (1.0) 8.4 (1.2) 9.0 (1.0) 9.4 (1.8) 9.0 (1.0)

 Noncore 6.8 (0.9) 6.3 (0.8) 7.1 (1.1) 6.3 (0.8) 6.9 (1.2) 6.3 (0.8)

NOTE: Differences in the distributions of a given demographic characteristic were first tested using Rao-Scott corrected χ2 tests comparing 
children who had experienced a given asthma outcome to those who had not (e.g. children with lifetime asthma vs children never diagnosed with 
asthma). If significant, bivariate associations (through unadjusted logistic regressions) were run between groups to see if differences existed by 
subgroup for a given demographic characteristic.

x
Significantly different from children without a current asthma diagnosis (p<.05).

y
Significantly different from children who did not have an asthma episode in the past 12 months (p<.05).

z
Significantly different from children who did not visit an ER in the past 12 months (p<.05).

J Asthma. Author manuscript; available in PMC 2023 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Connor and Zablotsky Page 19

Table 2 –

Conditional, unadjusted, and adjusted models

Outcomes Model 0
a Model 1

b

OR (95% CI)
Model 2

c

AOR (95% CI)
Model 3

d

AOR (95% CI)

Current asthma

Q1 --- Reference Reference Reference

Q2 --- 1.111 (1.014–1.217)* 1.056 (0.957–1.164) 1.043 (0.945–1.151)

Q3 --- 1.190 (1.079–1.313)* 1.141 (1.020–1.277)* 1.118 (0.998–1.253)

Q4 --- 1.168 (1.047–1.303)* 1.125 (0.991–1.277) 1.073 (0.941–1.223)

(ICC) (0.048) (0.047) (0.041) (0.037)

Asthma episode

Q1 --- Reference Reference Reference

Q2 --- 1.080 (0.962–1.213) 1.100 (0.970–1.247) 0.998 (0.881–1.131)

Q3 --- 1.252 (1.108–1.414)* 1.297 (1.125–1.495)* 1.158 (1.004–1.335)*

Q4 --- 1.137 (0.992–1.303) 1.217 (1.036–1.429)* 1.046 (0.888–1.233)

(ICC) (0.057) (0.057) (0.051) (0.047)

Asthma ER visit

Q1 --- Reference Reference Reference

Q2 --- 1.144 (0.944–1.386) 1.090 (0.889–1.335) 1.055 (0.859–1.296)

Q3 --- 1.395 (1.142–1.704)* 1.308 (1.044–1.639)* 1.270 (1.009–1.599)*

Q4 --- 1.397 (1.122–1.739)* 1.326 (1.032–1.705)* 1.234 (0.950–1.603)

(ICC) (0.140) (0.135) (0.107) (0.101)

*
p<.05

NOTES: ICC is intraclass correlation coefficient; OR is odds ratio; CI is confidence interval; AOR is adjusted odds ratio; ER is emergency room; Q 
is quartile.

The annual average concentrations of PM2.5 in μg/m3 in Quartile 1: < 8.11; Quartile 2: 8.11–9.50; Quartile 3: 9.51–10.59; Quartile 4: ≥ 10.60).

a
Model 0 is a multilevel analysis with only the outcome of interest.

b
Model 1 is a multilevel bivariate logistic regression of the outcome of interest and PM2.5 air pollution concentration (broken into quartiles).

c
Model 2 is a multilevel multivariate logistic regression of the outcome of interest and PM2.5 air pollution concentration (broken into quartiles), 

further adjusted by American Community Survey (ACS) county-level characteristics, and geographical household characteristics.

d
Model 3 is a multilevel multivariate logistic regression of the outcome of interest and PM2.5 air pollution concentration (broken into quartiles), 

further adjusted by American Community Survey (ACS) county-level characteristics, geographical household characteristics, National Health 
Interview Survey (NHIS) child and family-level characteristics, and survey year.
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